Although the presentation is titled flowchart and paragraph proofs, the following slides are all 2 column proofs for your practice. All proofs have no supportive information embedded within the proof. The solutions to them will be uploaded at some point before the Unit 1 test. Until then, compare with each other and see me in tutorial. I hope this helps!!!!

PROOF PROCESS

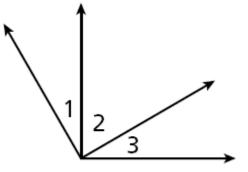
Step 1: State the given Step 2: Make some equivalency Step 3: Transition from given to prove Step 4: Conclude with the proven

Holt McDougal Geometry

Example 1: Reading a Flowchart Proof

Use the given to write a two-column proof.

Given: $\angle 2$ and $\angle 3$ are comp. $\angle 1 \cong \angle 3$ Prove: $\angle 2$ and $\angle 1$ are comp.



Holt McDougal Geometry

Use the given to write a two-column proof.

Given: RS = UV, ST = TUProve: $\overline{RT} \cong \overline{TV}$ Flowchart proof:

Example 2: Writing a Flowchart Proof

Given: *B* is the midpoint of \overline{AC} . Prove: 2AB = AC

Holt McDougal Geometry

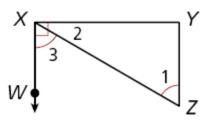
Use the given to write a two-column proof

Given: ∠2 ≅ ∠4 Prove: m∠1 ≅ m∠3 Two-column Proof:

Check It Out! Example 3

Use the given to write a 2 column proof.

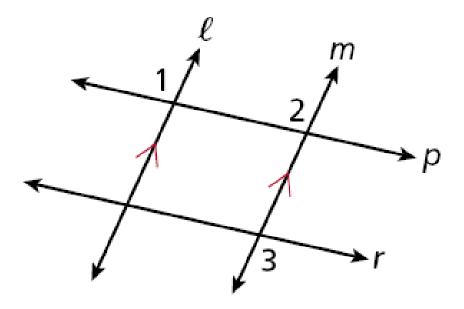
Given: $\angle WXY$ is a right angle. $\angle 1 \cong \angle 3$ **Prove:** $\angle 1$ and $\angle 2$ are complementary.



Holt McDougal Geometry

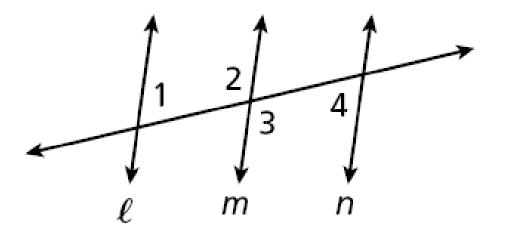
Example 3: Proving Lines Parallel

Given: *p* || *r* , ∠1 ≅ ∠3 Prove: ℓ || *m*



Holt McDougal Geometry

Given: $\angle 1 \cong \angle 4$, $\angle 3$ and $\angle 4$ are supplementary. Prove: $\{ | | m \}$

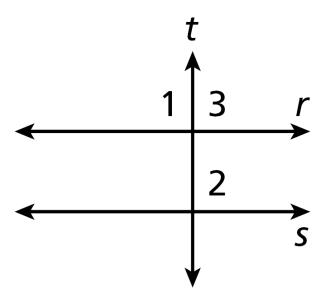


Example 2: Proving Properties of Lines

Write a two-column proof.

Given: *r* || *s*, ∠1 ≅ ∠2

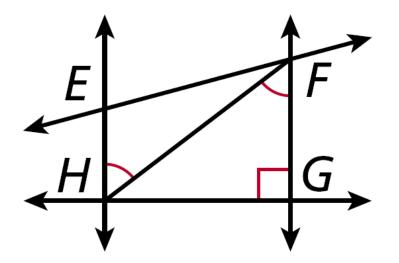
Prove: $r \perp t$



Holt McDougal Geometry

Write a two-column proof.

Given: $\angle EHF \cong \angle HFG, \overrightarrow{FG} \perp \overrightarrow{GH}$ **Prove:** $\overrightarrow{EH} \perp \overrightarrow{GH}$

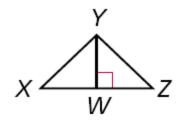


Holt McDougal Geometry

Example 3: Proving Triangles Congruent

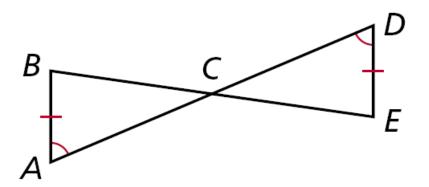
Given: $\angle YWX$ and $\angle YWZ$ are right angles.

\overline{YW} bisects $\angle XYZ$. W is the midpoint of \overline{XZ} . $\overline{XY} \cong \overline{Y}$



Check It Out! Example 3

Given: \overline{AD} bisects \overline{BE} . \overline{BE} bisects $\overline{AB} \cong \overline{DE}$, $\angle A \cong$ \overrightarrow{PP} ove: $\triangle ABC \cong \triangle DEC$



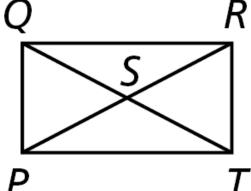
Holt McDougal Geometry

Example 4: Engineering Application

The diagonal bars across a gate give it support. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent.

Given: \overline{PR} and \overline{QT} bisect each other. $\angle PQS \cong \angle RTS, \overline{QP} \cong \overline{RT}$

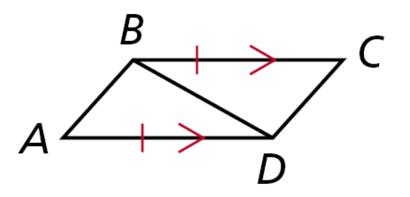
Prove: $\Delta QPS \cong \Delta TRS$



Example 4: Proving Triangles Congruent

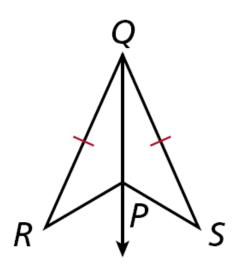
Given: $BC \parallel AD, BC \cong AD$

Prove: $\triangle ABD \cong \triangle CDB$



Check It Out! Example 4

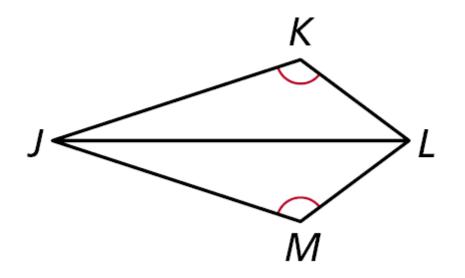
Given: \overrightarrow{QP} bisects $\angle RQS$. $\overrightarrow{QR} \cong \overrightarrow{QS}$ **Prove:** $\Delta RQP \cong \Delta SQP$



Holt McDougal Geometry

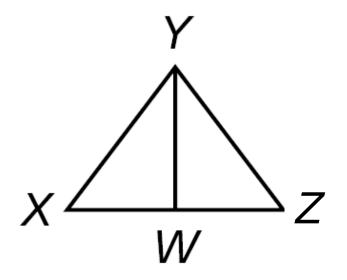
Use AAS to prove the triangles congruent. **Given:** \mathcal{H} bisects $\angle KLM$, $\angle K \cong \angle M$

Prove: $\Delta JKL \cong \Delta JML$



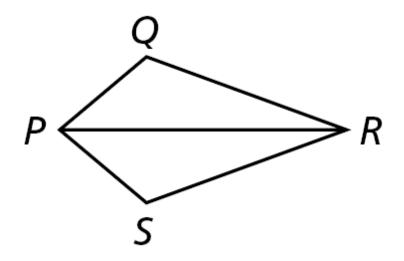
Example 2: Proving Corresponding Parts Congruent

Given: \overline{YW} bisects \overline{XZ} , $\overline{XY} \cong \overline{YZ}$. **Prove:** $\angle XYW \cong \angle ZYW$



Holt McDougal Geometry

Given: \overline{PR} bisects $\angle QPS$ and $\angle QRS$. **Prove:** $\overline{PQ} \cong \overline{PS}$



Holt McDougal Geometry

Example 4: Using Coordinate Proof

Prove that the segment joining the midpoints of two sides of an isosceles triangle is half the base.

Given: In isosceles $\triangle ABC$, X is the mdpt. of AB, and Y is the mdpt. of AC.

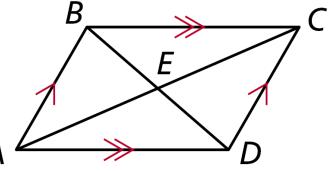
Prove:
$$XY = \frac{1}{2} AC$$
.

Example 4A: Using Properties of Parallelograms in a Proof

Write a two-column proof.

Given: ABCD is a parallelogram.

Prove: $\Delta AEB \cong \Delta CED$

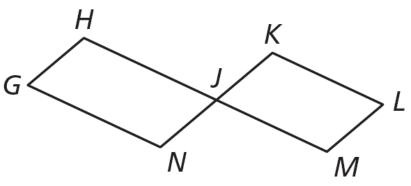


Example 4B: Using Properties of Parallelograms in a Proof

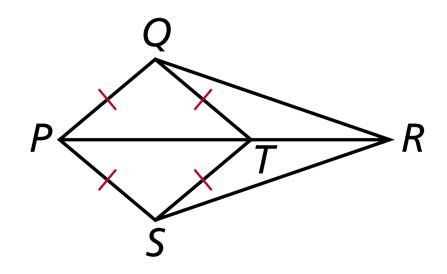
Write a two-column proof.

Given: GHJN and JKLM are parallelograms. H and M are collinear. N and K are collinear.

Prove: $\angle H \cong \angle M$



Given: *PQTS* is a rhombus with diagor \overline{PR} . **Prove:** $\overline{RQ} \cong \overline{RS}$



Holt McDougal Geometry

Example 4: Writing Proofs with Similar Triangles

Given: 3UT = 5RT and 3VT = 5STProve: $\Delta UVT \sim \Delta RST$

